福萊特玻璃集團股份有限公司 Flat Glass Group Co., Ltd.

(stock code: 06865)

Articles of Association

(,..., £f , £, 16 A₁ I₁ , 2021)

Articles of Association of Flat Glass Group Co., Ltd.

Chapter 1 General Provisions

 $\frac{1}{2} \left(\frac{1}{2} \left$

29 D 2005 ...
A ...
H ...
W ...
913300007044053729.

Article 2 R_{I_1} , ..., f_{I_2} :

: 福萊特玻璃集團股份有限公司

 $A \in A \quad \stackrel{\bullet}{\longleftarrow} \quad A, \quad D.$

Article 3 $A_{i_1, \dots, i_{k-1}}$ $f_{i_1, \dots,$

314001;

: (86573) 82793999;

(86573) × 82793015.

- Article 4 $f_1, \dots, f_n, \dots, f_$
- Article 6 A_{-1} A_{-1}
- $\mathbf{I}_{\mathbf{A}}^{\mathbf{F}} = \mathbf{A}_{\mathbf{A}}^{\mathbf{F}} + \mathbf{A}_{\mathbf$

Chapter 2 Objective and Scope of Business

Article 9 $f_{1} = f_{2} = f_{3} = f_{4} = f_$

Article 10 \mathcal{L}_{1} , \mathcal{L}_{2} , \mathcal{L}_{3} , \mathcal{L}_{4} , \mathcal{L}_{3} , \mathcal{L}_{4} , \mathcal{L}_{3} , \mathcal{L}_{4} , \mathcal{L}_{3} , \mathcal{L}_{4} , $\mathcal{L}_$

 $f_{i_{1},i_{2},i_{3},...,i_{n}}, f_{i_{1},i_{2},...,i_{n}}, f_{i_{1},i_{2$

Chapter 3 Shares and Registered Capital

Article 11 $f_{ij} = f_{ij} =$

Article 12 A $\sim 10^{-1}$ ~ 0.25 .

the street was a south of the south of the terms of the south of the s

Article 13 f_{ij} f_{ij}

Article 14

Articl

and the second of the second o

H. 1. 1. W. 70 70,000,000 70,000,000 , ,

No.	Name of shareholder	Amount of capital contributed (RMB'000)	Percentage of contribution (%)	Contribution method	Date of contribution
1	№ . H I I	24,500	35.0		D 2005
2	, , L , , A	17,500	25.0		D 2005
3	N	17,500	25.0		D. 2005
4	1. I I	3,150	4.5		D 2005
5	W ∠, I,I ,	2,100	3.0		D 2005
6	и в . ,	2,100	3.0		D 2005
7	I	1,050	1.5		D 2005
8	W f	700	1.0		D 2005
9	, Н., г л	700	1.0		D 2005
10	л.,	700	1.0		D 2005
Total		70,000	100	_	

Article 18 $f_{i_1}, \dots, f_{i_{k-1}}, \dots, f_{i_$

 $A = \{ (x_{i_1}, t_{i_2}, \omega_i) \in \mathcal{F}_{i_1}, (x_{i_2}, \omega_i) \in \mathcal{F}_{i_2}, (x_{i_2}, \omega_i) \in \mathcal{F}_{i_2},$

Article 19 f_{ij} f_{ij}

Article 20 536,723,313.50.

- (V) f , f
- (V) ..., f ..., f ...;

- $(\underline{\hspace{0.5cm}})$..., $\underline{\hspace{0.5cm}}$, $\underline{\hspace{0.5cm}}$,
- $\left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\left(\right) \\ \end{array} \right) \\ \left(\begin{array}{c} \left(\right) \\ \end{array} \right) \\ \left(\begin{array}{$

Article 22 H_{1} H_{2} H_{3} H_{4} H_{5} H_{5} H

Chapter 4 Capital Reduction and Repurchase of Shares

Article 24 A_{1} A_{2} A_{3} A_{4} A_{5} A_{5} A

Article 25 $\mathcal{L}_{\mathbf{A}}$ $\mathcal{L$

 $(x_1, \dots, x_n) \in \mathcal{L}_{\chi_1}^{(n)} \times \mathcal{L}_{\chi_2}^{(n)} \times \mathcal{L}_{\chi_1}^{(n)} \times \mathcal{L}_{\chi_2}^{(n)} \times \mathcal{L}_{\chi_1}^{(n)} \times \mathcal{L}_{\chi_2}^{(n)} \times \mathcal{L}_{\chi_2}^{(n$

Article 26 $f_{1}, \dots, f_{n-1}, \dots, f_{n-1}$

- $(\)_{W}, \ldots, I_{\Lambda}, I_{\Lambda}, \ldots, \ldots, I_{\Lambda}, \ldots, I$
- $(-)_{\overline{W}},...,\iota_{\Lambda\Lambda},\iota_{\Lambda},\ldots,\iota_{\Lambda},$
- $(\nabla)_{W_{i,L_{i},\ldots,L_{i},L_{i},\ldots}} f_{i,L_{i},\ldots,L_{i},\ldots} f_{i,L_{i},\ldots$

Article 27 $f_{ij} = f_{ij} =$

- () $\operatorname{col}_{X} \mathcal{I}$ and $\operatorname{col}_{X} \mathcal{I}$. $\operatorname{col}_{X} \mathcal{I}$, $\operatorname{col}_{X} \mathcal{I}$,
- $(\) \quad \cup_{i_1, i_2, \dots, i_r} \cup_{i_1, i_2, \dots, i_r} \cup_{i_1, i_2, \dots, i_r} \cup_{i_r, i_r$

- $(-) = \mathsf{L}_{\ell_{\Lambda}} L_{+} = -\mathsf{L}_{\ell_{\Lambda}} \mathsf{L}_{\ell_{\Lambda}} + \mathsf{L}_{\ell_{\Lambda}} \mathsf{L}_{\ell_{\Lambda}} + \mathsf{L}_{\ell_{\Lambda}} \mathsf{L}_{\ell_{\Lambda$
- $\binom{1}{V}$ and $\binom{1}{V}$ and

 $(), \bigvee_{i=1}^{n} () & (), \stackrel{f}{\longrightarrow} A \cdot_{i} = 26 \cdot \stackrel{f}{\longrightarrow} A \cdot_{i} = 1 \cdot \stackrel{f}{\longrightarrow} A \cdot_{i}$

 $(1, \dots, 1, \dots, 1,$

and the second s

A, f

- () $\sum_{\lambda} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum$
- $() \underset{\text{W.ff}}{\text{W.ff}}$

 $f_{\lambda} = \frac{f_{\lambda}}{10\%} \cdot \frac{f_$

- () f_{α} , f_{α} ,
- () f_{α} , f_{α} ,
 - 1. Destinate $f_{i_1, \dots, i_{n-1}, \dots, i_{n$
 - 2. Define f and f
- () $f_{i_1} = f_{i_2} = f_{i_3} =$
 - $1,\quad A_{\frac{1}{2}\Gamma_{\lambda,\lambda}},r_{\frac{1}{2}\lambda}, r_{\frac{1}{2}\lambda}, r_{\frac{$
 - 2. I_{λ} , I_{λ} ,

Chapter 5 Financial Assistance to Acquire Shares of the Company

Article 31 $f_{1}, \dots, f_{n-1}, \dots, f_{n-1}$

 $\frac{\mathcal{F}_{k}}{\mathcal{F}_{k}} = \frac{\mathcal{F}_{k}}{\mathcal{F}_{k}} = \frac{\mathcal$

 $\mathcal{J}_{\mathcal{A}_{\lambda}} = \mathcal{J}_{\mathcal{A}_{\lambda}} + \mathcal{J}_{\mathcal{A}$

Article 32 $f_{X_1, X_2, X_3} = f_{X_1, X_2,$

- () **C**, **f**;
- () \P ..., $(, -1)_{\lambda}$, $(, -1)_{\lambda}$, (,
- $(-) = (-1)_{X_1 X_2 X_3} \cdot (-1)_{X_1 X_3 X_4} \cdot (-1)_{X_1 X_2 X_3} \cdot (-1)_{X_1 X_3 X_4} \cdot (-1)_{X_1 X_3 X_4} \cdot (-1)_{X_1 X_4 X_4} \cdot ($
- $(\nabla) = (\nabla f_{1}, \dots, f_{n}, \dots, f_{n}$

 $\underbrace{f_{-1}, \iota_{-1}, \iota_{-1}, \ldots, f_{-1}, \iota_{-1}, \iota_{-1}, \iota_{-1}, \ldots, \iota_{-1}, \ldots, \iota_{-1}, \iota_{-1}, \iota_{-1}, \iota_{-1}, \ldots, \iota_{-1}, \iota_{-1$

Article 33 A_{i_1} A_{i_2} A_{i_3} A_{i_4} $A_{$

- () in a second to the second t
- $(\nabla) \longrightarrow (\nabla \cdot A_1, \dots \cdot A_n, \dots \cdot$

Chapter 6 Shares and Shareholders' Register

per many for an analysis of and a form

- () ;

- (∇) (∇)

Direction of the second of th

- () $f_{1}, \dots, f_{n}, \dots, f$

A such that I_{k} is a function of I_{k} is a I_{k} in the first I_{k} and I_{k} is a I_{k} in the I_{k} and I_{k} is a I_{k} in the I_{k} and I_{k} is a I_{k} in the I_{k} and I_{k} in the I_{k} is a I_{k} in the I_{k} and I_{k} in the I_{k} is a I_{k} in the $I_{$

The second of th

Article 40 λ_1 λ_2 λ_3 λ_4 λ_4 λ_5 λ_4 λ_5 λ_4 λ_5 λ_5

and the second of the second of the second

- () $\mathcal{L}_{\mathcal{L}}$, \mathcal

Article 41 $f_1, \dots, f_k, \dots, f$

A service of the serv

and the same of th

Article 43 f = f = f = f f = f = f f = f = f f = f = f f = f = f f = f = f

Article 45 f_{ij} , $f_{$

And the second s

- () I for a property to a particular and a second for the second and a second for a particular and a second for a second fo
- () A = f , f
- $\begin{array}{c} (-) & \text{if } i=1, i, i, k \text{ for } i=1, \dots, i \text{ for } i=1, \dots,$

The same of the sa

- $(-)_{W}, \dots, \dots, (-)_{\chi_{1}, \chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}, \chi$
- $\begin{array}{c} (-) \ A & \cdots & (-) \ A$

Article 48 A.f. ... f ...

Article 49 f_1 f_2 f_3 f_4 f_5 f_5 f_6 f_6 f_6 f_6 f_7 f_8 f_8

Chapter 7 Rights and Obligations of Shareholders

The contract of the contract o

And the second of the second o

 $\underbrace{\mathbb{W}}_{1,2,\ldots,2} \dots \underbrace{\mathbb{A}}_{1,2,\ldots,2} \dots \underbrace{\mathbb$

(v) A color of the second of t

Article 51 $f_{i_1, i_2, i_3} = f_{i_1, i_2, i_3} = f_{i_2, i_3} = f_{i_3, i_4, i_3} = f_{i_4, i_4, i_5} = f_{i_4, i_4, i_5} = f_{i_4, i_4, i_5} = f_{i_4, i_4, i_5} = f_{i_4, i_5} = f_{$

- $(\bigvee) \quad , \quad , \quad , \quad f \quad , \quad \chi_{_{1}} \quad , \quad \chi_{_{1}} \quad , \quad \chi_{_{2}} \quad , \quad \chi_{_{3}} \quad , \quad \chi_{_{1}} \quad , \quad \chi_{_{2}} \quad , \quad \chi_{_{3}} \quad , \quad \chi_{_{3}}$
- - 1. $\mathfrak{L}_{\mathbf{x}_{i},\mathbf{x}_{i},\mathbf{z}_{i}}$, $\mathfrak{L}_{\mathbf{x}_{i}}$, $\mathfrak{L}_{\mathbf{x}_{i}}$, $\mathfrak{L}_{\mathbf{x}_{i}}$, $\mathfrak{L}_{\mathbf{x}_{i},\mathbf{x}_{i}}$, $\mathfrak{L}_{\mathbf{x}_{i},$
 - 2. f_{λ} , f_{λ} ,

 - - (.) , , , , , , , , (e. , , , ,);
 - () ***** ...;
 - $(c)=(1-\overline{\gamma}_{k})_{k+1}, \quad c=(1-\overline{\gamma}_{k})_{k+1}, \quad (1-\overline{\gamma}_{k})_{k+1}, \quad (1-\overline{\gamma}_{k})_{$

- (3) \mathbb{R}_{-1} , \mathcal{J}_{-1} ,

- (6) $f_{i_1, \dots, i_n} f_{i_1, \dots, i_n} f_{i_1,$
- (8) W. L. J. L. L. L. L. (f. 100 1
- - $(-) \cdot (-) \cdot (-)$

 - (X) . A, ... $f_{A,...}$ $f_{A,...}$

Article 52 f_{A} f_{A} f

A constant of f and f are f and f and f and f are f and f and f are f and f and f are f are f and f are f and f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f and f are f are f and f are f are f and f are f and f are f and f are f are f are f are f and f are f and f are f are

Article 53 $\mathcal{F}_{\mathcal{A}_{i}}$ $\mathcal{F}_{\mathcal{A}_{i}}$

- () $A_{i_1} A_{i_2} A_{i_3} A_{i_4}$

- (V) and the state of the state

As $x = x_1 + x_2 + x_3 + x_4 + x_5 + x_5$

The first of the second second

And the second s

Article 55 \mathcal{L}_{X} \mathcal{L}_{X}

- () $\mathcal{L}_{i} = \mathbf{r}_{i}, \mathcal{L}_{i}, \mathbf{r}_{i}, \dots, \mathbf{r}_{i}, \mathbf{r}_{i} = \mathbf{r}_{i}, \dots, \mathbf{r}_{i}, \dots,$

Article 57 A ..., f ..., f

- $() \quad \underset{\leftarrow}{\text{W}} \quad \stackrel{\leftarrow}{\sim}_{\lambda}, \stackrel{\leftarrow}{\downarrow} \quad \dots \quad \stackrel{\leftarrow}{\sim}_{\lambda}, \stackrel{\leftarrow}{\downarrow}_{\lambda}, \dots \quad \stackrel{\leftarrow}{\sim}_{\lambda}, \stackrel{\leftarrow}{\sim}_{\lambda}, \dots \quad \stackrel$
- $W_{i_1, \dots, i_n} = \frac{1}{30\%} \left(\frac{1}{10\%} \right) \cdot \frac{f_{i_1, \dots, i_n}}{30\%} \left(\frac{1}{10\%} \right) \cdot \frac{f_{i_1, \dots, i_n}}{30\%}$
- $W = \frac{1}{30\%} \left(\frac{1}{100} + \frac{1}{100} +$

 $f_{\lambda} = \frac{1}{\lambda} \left(\frac{1}{\lambda} \frac{1}{\lambda} \frac{1}{\lambda} \dots \frac{1}{\lambda} \frac{1}{\lambda} \frac{1}{\lambda} \dots \frac{1}{\lambda} \frac{1}{\lambda} \frac{1}{\lambda} \dots \frac{1}{\lambda} \frac{1}{\lambda} \frac{1}{\lambda} \dots \frac{1}{\lambda} \dots \frac{1}{\lambda} \frac{1}{\lambda} \dots \frac$

Chapter 8 General Meetings

Article 58 $f_{1}, f_{2}, \dots, f_{n-1}, \dots,$

()

- $(X_{\overline{V}})$ $(X_$
- $\frac{f(X)}{f(X)} = \frac{f(X)}{f(X)} = \frac{f(X)}{f(X)$
- (XX) and provide the confidence of the confidenc

Article 60 And Article 7 And A

- () \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i} , \mathbf{A}_{i}
- () A_{i} , A_{i}

Article 61 $f_1, \dots, f_n, \dots, f$

 $\frac{1}{1+\frac{1}{2}} \frac{1}{1+\frac{1}{2}} \frac{1}{1+\frac{1}{$

- $(\)_{W_{\omega_{\lambda^{*}}}^{-1}}, \ldots, \ldots, f_{\omega_{\lambda^{*}}}, \ldots, \ldots, f_{\omega_{\lambda^{*}}}, \ldots, f_{\omega_{\lambda^{*$
- $\begin{array}{c} () \\ W \\ \vdots \\ A_{i}, L \\ \end{array} \begin{array}{c} () \\ A_{i}, L$
- $(\mathbf{v})_{\mathbf{w}},\dots,\mathbf{v},\dots,\mathbf{v},\dots,\mathbf{v}},\dots,\dots,\mathbf{v},\dots,\mathbf{$
- $\begin{pmatrix} \cdot \\ \mathbf{V} \end{pmatrix}$ \mathbf{W}
- $(\begin{array}{c} (\end{array}{c} (\end{array}{c} (\end{array}) \\ (\begin{array}{c} (\begin{array}{c} (\begin{array}{c} (\end{array}{c} (\end{array}) \\ (\begin{array}{c} (\begin{array}{c} (\begin{array}{c} (\begin{array}{c} (\end{array}{c} (\end{array}) \\ (\begin{array}{c} (\end{array}) \\ (\begin{array}{c} (\end{array}) \\ (\begin{array}{c} (\begin{array}{c} (\end{array}) \\ (\end{array}) \\ (\begin{array}{c} (\end{array}) \\$

 $D_{i_1}(\mathcal{L}_{\mathcal{A}},\mathcal{L}_{\mathcal{A}},\mathcal{L}_{\mathcal{A}}) = (\mathcal{A}_{i_1}(\mathcal{L}_{\mathcal{A}},\mathcal{L}_{\mathcal{A}}), \quad \mathcal{A}_{i_2}(\mathcal{L}_{\mathcal{A}},\mathcal{L}_{\mathcal{A}}), \quad \mathcal{A}_{i_1}(\mathcal{L}_{\mathcal{A}},\mathcal{L}_{\mathcal{A}},\mathcal{L}_{\mathcal{A}}) = (\mathcal{A}_{i_1}(\mathcal{L}_{\mathcal{A}},\mathcal{L}_{\mathcal{A}},\mathcal{L}_{\mathcal{A}}), \quad \mathcal{A}_{i_2}(\mathcal{L}_{\mathcal{A}},\mathcal{L}_{\mathcal{A}},\mathcal{L}_{\mathcal{A}}) = (\mathcal{A}_{i_1}(\mathcal{L}_{\mathcal{A}},\mathcal{$

- $(1) \underset{\longleftarrow}{\mathbf{W}}, \ldots, \underset{\longleftarrow}{\mathbf{A}}, \ldots, \underbrace{\mathbf{f}}, \ldots, \underbrace{\mathbf{f}$
 - $(2) \quad \underset{X^{c}}{\longrightarrow} \quad W \quad \longrightarrow \quad 1 \quad \stackrel{f}{\longrightarrow} \quad \stackrel{f}{\longrightarrow} \quad \dots \quad \stackrel{f}{\longrightarrow} \quad \dots \quad \dots \quad \longrightarrow \quad \qquad f \quad \dots$
 - (3) $_{\mathbf{W}}$, $_{\mathbf{W$

 $\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2}$

- $(\) \quad \sim \ _{\lambda}f_{\lambda}, \ldots, \ldots, 1, \lambda, \gamma, \ldots, \gamma, \gamma, \chi, \ldots, f_{\lambda}, \ldots, f_{\lambda}, \ldots, \chi, \chi, \chi;$
- $(y) = \sum_{i \in \mathcal{A}} (i + i) + \sum_{i \in \mathcal{A}} ($
- $\left(\begin{array}{c} \left(\begin{array}{c} 1\end{array}\right) & \ldots & \left(\begin{array}$
- $\left(\begin{array}{c} \left(\begin{array}{c} \\ \\ \end{array} \right) = \left(\begin{array}{c} f \\ \\ \end{array} \right) \left(\begin{array}{c} f \\ \end{array} \right) \left(\begin{array}{c}$
- (X) I was a sure of the sure o

Article 65 f_{L} , f_{L} ,

Article 66 \mathbb{R}^{1} \mathbb{R}^{1}

Article 67 A. A_{1} A_{2} A_{3} A_{4} A_{5} A_{5}

- () I_{i} , I_{i} ,

Article 70 A. A_{i_1, i_2, i_3} A_{i_1, i_2, i_3} A_{i_2, i_3} A_{i_3, i_4} $A_{i_4, i_$

Article 71 A f_{1} f_{2} f_{3} f_{4} f_{5} f_{5}

 $f_{i_1, i_2, \dots, i_n}, f_{i_k}, \dots, f_{i_n}, \dots, f_{i_n, \dots, i_n}, \dots, f_{i_n}, \dots$

 $f_{i_1, \dots, i_n}, f_{i_1, \dots, i_n}, f_{i$

Article 74 $f_1, \dots, f_n, \dots, f$

- () $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum$
- () f_{ij} , f_{ij} , f

Article 75 \mathbb{W}^f f_1 f_2 f_3 f_4 f_5 f_5 f_5 f_6 $f_$

 $f_{i_1, \dots, i_n} = f_{i_1, \dots,$

 $\underbrace{f}_{(X,X)} \underbrace{f}_{(X,X)} \underbrace{$

 $A_{i_1} = A_{i_2} = A_{i_3} = A_{i_4} = A_{i$

Article 76 $x_1, \dots, x_{n-1}, \dots, x_{n-1}, \dots, x_{n-1}, \dots, x_n, \dots, x_n \in \mathbb{R}^n$

Article 77 f_{i_1} f_{i_2} f_{i_3} f_{i_4} f_{i_5} $f_{$

 $f_{i,1}, \dots, f_{i,k}, \dots, f_{i$

 $\frac{1}{2} \left(\frac{1}{2} \left$

The second of χ is a second o

Article 80 \mathbb{Z}_{1} \mathbb{Z}_{2} \mathbb{Z}_{3} \mathbb{Z}_{4} \mathbb{Z}_{3} \mathbb{Z}_{4} \mathbb{Z}_{4}

- () , , , , , , f, , , , , , , , ;;
- () $\oint_{\mathcal{A}} \dots \int_{\mathcal{A}} \int_{\mathcal{A}} \dots \int_{\mathcal{A}} \int_{\mathcal{A}} \int_{\mathcal{A}} \int_{\mathcal{A}} \dots \int_{\mathcal{A}} \int_{\mathcal{A}} \int_{\mathcal{A}} \int_{\mathcal{A}} \dots \int_{\mathcal{A}} \int_{\mathcal{A}} \int_{\mathcal{A}} \int_{\mathcal{A}} \int_{\mathcal{A}} \dots \int_{\mathcal{A}} \int_{\mathcal{A}} \int_{\mathcal{A}} \int_{\mathcal{A}} \int_{\mathcal{A}} \dots \int_{\mathcal{A}} \int_{\mathcal{$

and the property of the proper

Article 83 $\mathbb{R}_{I_{\lambda}}$, \mathbb

Article 84 f_{1} , f_{2} , f_{3} , f_{4} , f_{5} ,

- () f_{α} f_{α} f

- $(\bigvee) \quad \text{i.i.} \quad f, \quad (,) \quad \text{i.i.} \quad (,) \quad \text{i.i.} \quad f, \quad \text{i.i.} \quad (,) \quad (,) \quad \text{i.i.} \quad (,) \quad$
- $\begin{array}{c} (\cdot) \\ \underset{\leftarrow}{\mathbb{W}} \\ (\cdot) \\ (\cdot)$

 $\frac{1}{2} \frac{1}{2} \frac{1$

A commence of the second of th

- () $\frac{f_{i_1}}{W}$, $\frac{f_{i_2}}{W}$, $\frac{f_{i_3}}{W}$, $\frac{f_{i_4}}{W}$, $\frac{f_{i_4}}{W}$, $\frac{f_{i_5}}{W}$, \frac
- $(-) = \frac{f}{\lambda} \cdot \epsilon_{\lambda} \cdot \epsilon_{\lambda$
- $(\)\ A_{-1,\lambda},\ldots, f_{-1,\lambda},\ldots, f_{-1,\lambda},\ldots$
- $(\bigvee_{i \in \mathcal{I}_{i}}) A_{i,i} = A_{i,i} A_{i$
- () where ()

Article 88 $\mathcal{L}_{X_{i}} \mathcal{L}_{X_{i}} \mathcal{L}_$

- $() = \{ (x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathcal{F}_{\mathbf{A}^n} : x_n \in \mathcal{F}_$
- $(-) \ D_{i_1,i_2,\ldots,i_{r-1},\ldots,i_{r-$
- (V) $\land V$ $\land V$ $\land A$ $\land A$

- $(-) \quad \wedge \quad _{\lambda}, \quad \bullet_{\lambda}, \quad \dots \quad \bullet_{\lambda} \quad \dots \quad \bullet_{\lambda}, \quad \dots \quad$

Article 89 \mathbb{R}^{2} \mathbb{R}^{2}

 $\frac{1}{2} \left(\frac{1}{2} \left$

 $A = \underbrace{f}_{A_{1}} \underbrace{f}_{A_{2}} \underbrace{f}_{A_{2}}$

Article 90 A_{1} A_{2} A_{3} A_{4} A_{5} A_{5} A

Article 91 f_{ij} f_{ij}

and the state of t

Article 93 \mathbb{R} . $\mathbb{R}_{\lambda_{1}}$. $\mathbb{R}_{\lambda_{2}}$. $\mathbb{R}_{\lambda_{1}}$. $\mathbb{R}_{\lambda_{2}}$. $\mathbb{R}_{\lambda_{1}}$. $\mathbb{R}_{\lambda_{2}}$. $\mathbb{R}_{\lambda_{1}}$. $\mathbb{R}_{\lambda_{2}}$. $\mathbb{R}_{\lambda_{2}}$. $\mathbb{R}_{\lambda_{1}}$. $\mathbb{R}_{\lambda_{1}}$. $\mathbb{R}_{\lambda_{2}}$. $\mathbb{R}_{\lambda_{1}}$. $\mathbb{R}_{\lambda_{2}}$. $\mathbb{R}_{\lambda_{1}}$. $\mathbb{R}_{\lambda_{2}}$. $\mathbb{R}_{\lambda_{1}}$. $\mathbb{R}_{\lambda_{1}}$. $\mathbb{R}_{\lambda_{2}}$. $\mathbb{R}_{\lambda_{1}}$. \mathbb

Article 94 f_{1} f_{2} f_{3} f_{4} f_{5} f_{5} f

Article 97 $f_{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{5},$

Chapter 9 Special Procedures for Voting by Class Shareholders

Article 98 H. $f_{i_1} f_{i_2} \dots f_{i_n} f_{i_n}$.

And the second of the second o

 $f_{(x,y)}(x,y) = f_{(x,y)}(x,y) + f_{($

Article 99

- () $(x_1, \dots, x_n) = (x_1, \dots,$

- $(V) = \{(x_1, x_2, \dots, x_n) \mid (x_1, x_2, \dots, x_n, x_n) \mid (x_1, x_2, \dots, x_$
- $\left(\begin{array}{c} \begin{array}{c} \\ \\ \end{array}\right) \quad , \quad \quad \\ \begin{array}{c} \\ \end{array}\right) \quad , \quad \\ \begin{array}{c} \\ \end{array}\right) \quad , \quad \quad \\ \\ \end{array}\right) \quad , \quad \quad \\ \begin{array}{c} \\ \end{array}\right) \quad , \quad \quad \\ \begin{array}{c} \\ \end{array}\right) \quad , \quad \quad \\ \\ \end{array}\right) \quad , \quad \quad \\ \begin{array}{c} \\ \\ \end{array}\right) \quad , \quad \quad \\ \\ \end{array}\right) \quad , \quad \quad \\ \begin{array}{c} \\ \\ \end{array}\right) \quad , \quad \quad \\ \\ \end{array}\right) \quad , \quad \quad \\ \begin{array}{c} \\ \\ \end{array}\right) \quad , \quad \quad \\ \\ \end{array}\right) \quad , \quad \quad \\ \\ \begin{array}{c} \\ \\ \end{array}\right) \quad , \quad \quad \\ \\ \end{array}\right) \quad , \quad \quad \\ \\ \\$

- (X^{-}) X_{1} X_{2} X_{3} X_{4} X_{5} $X_$
- (X) (X)
- $(X^{-}) = \{ (x, x) \in \mathbb{R} \mid x \in \mathbb{R} : x \in \mathbb{R} \mid x \in$

Article 101 \mathcal{L}_{λ} \mathcal{L}_{λ}

The second secon

- () $\frac{1}{1}$ \frac
- $\begin{array}{c} () \\ \text{W} \\ \text{...} \\ \text{$

Chapter 10 Board of Directors

Article 106 f_{i_1} f_{i_2} f_{i_3} f_{i_4} f_{i_4} f_{i_5} $f_$

 $f_{i_{1}}, \dots, f_{i_{n}}, \dots,$

 $f_{\lambda}, \dots, f_{\lambda}, \dots, f_{\lambda_{\lambda_{1}}}, \dots, f_{\lambda_{\lambda_{k}}}, \dots, f_{\lambda_{k}}, \dots,$

 $A_{i_1}, \dots, A_{i_{k-1}}, \dots,$

and the second of the second o

Article 108 f_{ij} f_{ij}

Article 109 \mathcal{F}_{α_1} \mathcal{F}_{α_2} \mathcal{F}_{α_3} \mathcal{F}_{α_4} \mathcal{F}

- (V) , V

- $(X) = \{x_1, x_2, \dots, x_N, x_N, \dots, x_N$
- (X) (X)
- (x^{-1}) , f , \dots , f
- $(X_{\overline{V}})$. $(x_1, x_2, \dots, x_{k-1}, \dots,$
- $(\mathbf{x}_{\mathbf{V}})$. $(\mathbf{x}_{\mathbf{v$
- $(\mathbf{x}_{\mathbf{V}})$. $\mathbf{x}_{\mathbf{V}}$. $\mathbf{x}_{\mathbf{V}}$

- (XX) . Let (XX) (
- $f_{(XX)}$. Let $f_{($
- (XX) . f 1 ;
- $(\chi\chi^{-}) = (\chi_{X} \chi_{X}) =$
- $(XX_{\overline{V}}) = (XX_{\overline{V}}) =$
- $(X_{\overline{V}}) \overset{\bullet}{\underset{\iota_{1},\ldots,\iota_{k}}{\bigvee}} , \overset{\bullet}{\underset{\iota_{1},\ldots,\iota_$
- $(XX_{\overline{V}})$ $(XX_{\overline{V}})$

- Article 110 $\mathcal{L}_{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{$
- Article 111 f_{i_1, \dots, i_r} f_{i_1, \dots, i_r}

Article 112 $f_1, \dots, f_{k-1}, \dots, f_{k-1},$

Article 113 f_{i_1} f_{i_2} f_{i_3} f_{i_4} f_{i_5} $f_$

Article 114 $f_{1}, \dots, f_{n}, \dots, f_$

- () A $f_{X_{1}} = 1 + c_{X_{1}} + c_{X_{2}} + c_{X_{1}} + c_{X_{2}} + c_{X_{2$

- $\left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(1\right) \\ \end{array}\right) \end{array}\right) \end{array}\right), \quad \left(\begin{array}{c} \left(\begin{array}{c} \left(1\right) \\ \end{array}\right), \quad \left(\begin{array}{c} \left(1\right) \\ \end{array}\right), \quad$
- $\left(\begin{array}{c} \left(\begin{array}{c} \\ \end{array}\right) \quad \ldots \quad \sum_{i=1}^{K} \left(\begin{array}{c} \\ \end{array}\right) \quad \ldots \quad \ldots \quad \sum_{i=1}^{K} \left(\begin{array}{c} \\ \end{array}\right) \quad \ldots \quad \ldots \quad \sum_{i=1}^{K} \left(\begin{array}{c} \\ \end{array}\right) \quad \ldots \quad \ldots \quad \ldots \quad \sum_{i=1}^{K} \left(\begin{array}{c} \\ \end{array}\right) \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots$

- () ..., , ., ..., ..., ...;
- $(\) \quad , \quad \boldsymbol{\sim}, \quad \boldsymbol{\wedge}, \quad \boldsymbol$
- $\begin{array}{c} (V) \\ W \\ (V) \\ ($
- (V) promote the state of property of the second

 $\frac{\mathcal{F}_{X}}{\mathcal{F}_{X}} = \frac{\mathcal{F}_{X}}{\mathcal{F}_{X}} = \frac{\mathcal$

- (1) ;
- $(3) \quad \mathbf{Q}_{\mathbf{z}} \quad \mathbf{Q}_{\mathbf{$

 $\mathcal{F}_{i_1,\ldots,i_k} = \mathcal{F}_{i_1,\ldots,i_k} = \mathcal{F}_{i_1,\ldots$

 $D_{x^{(2)}, \dots, x^{(k)}} = \int_{\mathbb{R}^{k}} \int_{$

Article 117 $f_{i_1, \dots, i_r} f_{i_1, \dots, i_r}$

- () ..., f_{e_1} ..., f_{e_1} ..., ;

- $\binom{1}{V}$ and $\binom{1}{V}$ are $\binom{1}{V}$ and $\binom{1}{V}$ and $\binom{1}{V}$ are $\binom{1}{V}$ and $\binom{1}{V}$ and $\binom{1}{V}$ are $\binom{1}{V}$ are $\binom{1}{V}$ are $\binom{1}{V}$ are $\binom{1}{V}$ are $\binom{1}{V}$ and $\binom{1}{V}$ are $\binom{1}{V}$ are

The second of th

Article 118 \mathbb{R}_{A} \mathbb{R}_{A}

 $A, \forall i \in \mathcal{I}_{k}, \forall i \in \mathcal{I$

- () $D_{i,i}$, $C_{i,i}$, $C_{i,i}$, $C_{i,i}$, $C_{i,i}$, $C_{i,i}$, $C_{i,i}$, $C_{i,i}$
- (∇) , (∇)

 $A = \dots = \sum_{i=1}^{n} f_{i_1} \dots f_{i_{n-1}} \dots f_{i_{n-1}}$

Article 119 f_{C_1} f_{C_2} f_{C_3} f_{C_4} $f_$

 $f_{i_1}, \dots, f_{i_{m+1}}, \dots,$

Article 120

A. fA. f

 $\mathbf{A}_{1}, \dots, \mathbf{a}_{k}, \dots, \mathbf{a$

 $f_{\lambda} = \bigcup_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^$

Article 121 D_{x} D_{x}

The control of the co

- $(\) \quad \ldots \quad \ldots \quad \ldots \quad \int_{\mathbb{R}^{N}} f f \quad \ldots \quad \ldots \quad \ldots \quad \int_{\mathbb{R}^{N}} f \int_{\mathbb{R}^{N}} f$
- - (2) $A_{i_1, \dots, i_k, \dots, i_k}$, A_{i_1, \dots, i_k} ,
- $(-) \quad \dots \quad \dots \quad \dots \quad (-)_{k} \quad \dots \quad (-)_{k} \quad \dots \quad (-)_{k} \quad \dots \quad \dots \quad (-)_{k} \quad \dots \quad (-)_{k$

 $f_{(1)}, \ldots, f_{(k)}, \ldots, f_{($

Article 123 A_{1} A_{2} A_{3} A_{4} A_{5} A_{5}

Chapter 11 Secretary to the Board of Directors

Article 124 $f_{e_{\lambda}}$ f_{e

Article 125 Article 125 Article 126 Article 126 Article 127 Article 127 Article 127 Article 128 Artic

- () \dots X_{i_1} X_{i_2} X_{i_3} X_{i_4} X_{i_5} X_{i_5}
- () construction of many of many or sent and a section of many or sent or sent of the section of

The second secon

Chapter 12 General Manager of the Company

Article 127 f_{i_1} f_{i_2} f_{i_3} f_{i_4} f_{i_5} $f_$

Article 128 f_{i_1} f_{i_2} f_{i_3} f_{i_4} f_{i_5} $f_$

- (X) , f , \dots , f
- (x) (x)
- (\mathbf{x}) . A. A. A. $f_{\mathbf{x}}$. A. A. A. $f_{\mathbf{x}}$. A. A. A. $f_{\mathbf{x}}$. A. $f_{\mathbf{x}}$.

Article 129 I_{i_1} I_{i_2} I_{i_3} I_{i_4} I_{i_5} $I_$

Chapter 13 Board of Supervisors

Article 131 $f_{11} = f_{12} = f_{13} = f_{14} = f_{14}$

Article 132 $f_{1} = f_{1} = f_{1} = f_{2} = f_{3} =$

 $\mathcal{F}_{i_1, \dots, i_{k+1}, \dots, i_$

Article 133 $f_{i,1} = f_{i,1} = f_{i,1} = f_{i,2} = f_{i,3} = f_{i,4} = f_$

Article 134 A_{r_1} , A_{r_2} , A_{r_3} , A_{r_4} , A_{r_5}

Article 135 \dots f_{1} \dots f_{n} \dots

- () \dots \dots f \dots f

and the second s

Article 137 And the second of the second of

Article 139 \mathbb{R}^{2} \mathbb{R}^{2}

Chapter 14 Qualifications and Duties of Directors, Supervisors, General Manager and Other Senior Management of the Company

- () $f_{1}, f_{2}, \dots, f_{n}, \dots, f_{n$

- $\left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \end{array}\right) & \text{ ... } \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \end{array}\right) & \text{ ... } \\ \end{array}\right) & \text{ ... } \end{array}\right)$
- (X^{-}) , X_{-} ,

Article 141 x_1, x_2, \dots, x_k $x_k, \dots, x_k \in \mathbb{R}^k$

- $() = \underbrace{\int_{-1}^{1} \int_{-1}^{1} \left(\left(\left(\left(\left(\frac{1}{2} \right) \right) \right) \left(\left(\frac{1}{2} \right) \right) \right) \left(\left(\left(\frac{1}{2} \right) \right) \right) \left(\left(\left(\frac{1}{2} \right) \right) \left(\left(\frac{1}{2} \right) \right) \right) \left(\left(\left(\frac{1}{2} \right) \right) \right) \left(\left(\frac{1}{2} \right) \right) \left($

- $\begin{array}{c} () \\ ()$

 $\frac{f_{i_1}, \dots, f_{i_k}, \dots, f_$

() As a series of the series

- () A_{-} ... f_{-} ...
- $(\bigvee) \ A_{-1} \ , \ \ldots \ , \ \square \ , \$

- $(\begin{array}{c} (\begin{array}{c}) \text{ A.s. } \dots & \text{ ... } \\ & \\ & \\ \end{array}) \text{ A.s. } \dots & \text{ ... } \\ & \text{ ... } \text{ I.s. } \text{ ... }$

- () Mine in the contract of the
- $(-)_{\substack{\lambda \in \Lambda^{1} \cap \Lambda$
- $\begin{array}{c} (\nabla)_{\mathbf{A}} \cdot (\mathbf{A}_{1} \cdot \mathbf{A}_{2} \cdot \mathbf{A}_{3} \cdot$

Article 144 $(x_1/x_1)_{X_1}$ $(x_1/x_2)_{X_2}$ $(x_1/x_1)_{X_1}$ $(x_1/x_2)_{X_2}$ $(x_1/x_2)_{X_1}$ $(x_1/x_2)_{X_2}$ $(x_1/x_2)_{X_2}$ $(x_1/x_2)_{X_1}$ $(x_1/x_2)_{X_2}$ $(x_1/x_2)_{X_2}$ $(x_1/x_2)_{X_1}$ $(x_1/x_2)_{X_2}$ $(x_1/x_2)_{X_2}$

- $(-) \quad , \quad /_{*} \quad , \quad /_{*}$
- f_{i} , f_{i} ;
- $\begin{array}{c} () \\$
- $(\nabla)_{\mathsf{N}^{\mathsf{A}},\mathsf{A}^{\mathsf{A}}$

- Lower of the form of the form
 - 1. Kilver ;
 - 2. 1. _{1. 1}. ;
 - 3. $\sum_{\lambda \in \mathcal{A}} \int_{\mathcal{A}} \int_$

Article 146 D_{x} , \dots , 1, \dots ,

- $() \quad \underset{\dots, _{k}}{\dots}, \quad$

Article 147 $\int_{\mathcal{A}} f_{f_{1}} \int_{\mathcal{A}} f_{f_{2}} \int_{\mathcal{A}} f_{f_{1}} \int_{\mathcal{A}} f_{f_{2}} \int_{\mathcal{A}} f_{f_{2$

Article 148 f_{A_1} f_{A_2} f_{A_3} f_{A_4} f_{A_4} f_{A_5} $f_$

Article 149 $f_{e_{\lambda}}$, ..., $f_{e_{\lambda}}$, ...,

 $A_{r_1}, \dots, a_{r_{r_1}}, \dots, a_{r_{r_{r_1}}}, \dots, a_{r_{r_{r_1}}}, \dots, a_{r_{r_{r_{r_1}}}}, \dots, a_{r_{r_{r_1}}}, \dots, a_{r_{r_1}}, \dots, a_{r_1}, \dots, a_{r_1},$

 $f_{i_1, i_2, \dots, i_{i_{i_1}}, i_2, \dots, i_{i_{i_1}}, \dots, i_{i_{i_1}}, \dots, i_{i_{i_1}, \dots, i_{i_1}}, \dots, i_{i_1}, \dots, i_{$

Article 150 f_1 , f_2 , f_3 , f_4 , $f_$

Contract to the Contract of the A. C. Contract of

- () Refer to $x_1, \dots, x_k \in \{x_1, \dots, x_k\}$ and $x_1, \dots, x_k \in \{x_1, \dots, x_k\}$ by $\{x_1, \dots, x_k\}$
- $(-) \begin{picture}(-){l} \begin{picture}($
- $(\bigvee_{i\in\mathcal{I}_{\lambda}}) = (\bigvee_{i\in\mathcal{I}_{\lambda}}, \dots, \bigvee_{i\in\mathcal{I}_{\lambda}}, \dots, \bigvee_{i\in\mathcal{I}_{\lambda}}, \dots, \bigvee_{i\in\mathcal{I}_{\lambda}}, \dots, \dots, \bigvee_{i\in\mathcal{I}_{\lambda}}, \dots, \bigvee_{i\in\mathcal{$

and the second of the second o

- () D_{x} , \dots , D_{x} , D
- $(-) \quad A_{-\lambda}, \quad \cdot_{\lambda}, \quad -1, \dots, \dots, \quad A_{-\lambda}, \quad -1, \dots, \quad -1, \dots, \quad -1, \dots, \quad -1, \dots, \dots \quad -1, \dots \quad -1, \dots, \dots \quad -1, \dots \quad -$

Article 158 $f_{1}, \dots, f_{n}, \dots, f_$

- () A, ff , f

 $A_{i,j} = \{ x_{i,j}, \dots, x_{i$

Chapter 15 Financial Accounting System and Profit Distribution

Article 159 And the second of the second of

Article 160 $f_1, \dots, f_{n-1}, \dots, f_{n-1},$

 $(x,y) = (x,y) \cdot (x,y$

and the second of the second o

Article 161 f_{C_1} , f_{C_2} , f_{C_3} , f_{C_4} , f_{C_5}

Article 162 f_{1} f_{2} f_{3} f_{4} f_{5} f_{5}

Article 164 $\mathcal{L}_{X_{1}, X_{2}, X_{3}}$ $\mathcal{$

At we have a second of the production of the second of the

For a series of the contract o

and the second of the second o

Article 168 \mathcal{L}_{X} , \mathcal{L}

Article 169 f_{1} f_{2} f_{3} f_{4} f_{5} f_{5}

- () ;
- () , ,;
- () $\underbrace{ \int_{X_{i}} \int_{X_{$

Article 171 $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, \dots, f_{5}$:

- () $= \int_{\mathbb{R}^{n}} \left\{ \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R$
- () is a constant of the consta
- $(\underbrace{\hspace{0.5cm}}) \quad (\underbrace{\hspace{0.5$

- The content of the co
- () Long the property of the control of the property of the control of the contro
- $\left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right)} \right) \right) \right) \right) & 1 \end{array} \right) & 1 \end{array} \right) \\ \end{array} \right) & \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \right) & 1 \end{array} \right) & 1 \end{array} \right) & 1 \end{array} \right) & 1 \end{array} \right) \\ \end{array} \right) & \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) & 1 \end{array} \right) & 1 \end{array} \right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) & 1 \end{array} \right) & 1 \end{array} \right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) & 1 \end{array} \right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) & 1 \end{array} \right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) & 1 \end{array} \right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) & 1 \end{array} \right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) & 1 \end{array} \right) \\ \left(\begin{array}{c} \left(\right) & 1 \end{array} \right) \\ \left(\begin{array}{c}$

- (x) For a frequency of a production of the contract of the con
- (x) = f(x) + (x) + (x)

And the state of the second se

Article 173 f_{1} f_{2} f_{3} f_{4} f_{5} f_{5}

Article 174 f_{1} f_{2} f_{3} f_{4} f_{5} f_{5}

and the second of the second o

To have

The second secon

and the second of the second o

- () D_{i_1,i_2,\dots,i_r} , \dots , c_{i_r} , $c_$
- () $\underbrace{\mathbf{f}_{\mathbf{x}, \mathbf{y}}}_{\mathbf{x}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{x}, \mathbf{y}}}_{\mathbf{x}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{x}, \mathbf{y}}}_{\mathbf{x}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{x}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{x}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{x}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{y}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{y}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{y}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{y}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{y}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{y}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{y}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{y}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{y}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{y}, \mathbf{y}}}_{\mathbf{y}, \mathbf{y}, \mathbf{y}} \underbrace{\mathbf{f}_{\mathbf{y}, \mathbf{y}}}_{\mathbf{y}$

Chapter 16 Appointment of Accounting Firm

Article 175 f_{1} f_{2} f_{3} f_{4} f_{5} f_{5}

 $f_{e_{\lambda_{1}}, 1}(1) = \dots, f_{\lambda_{k}}(1), \dots, f_{k}(1) = \dots, f_{e_{\lambda_{k}}}(1), \dots, f_{e_{\lambda_{k}}}(1) = \dots, f_{e_{\lambda_{$

Article 176 $f_{i_1, i_2, i_3} = f_{i_1, i_2, i_3} = f_{i_1, i_2, i_3} = f_{i_2, i_3, i_4} = f_{i_1, i_2, i_3} = f_{i_2, i_3, i_4} = f_{i_2, i_4} = f_$

Article 177 $\mathcal{L}_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}} + \mathcal{$

Article 179 \mathbb{R}_{L} \mathcal{L}_{L} \mathcal{L}_{L}

Article 180 $f_{1} = f_{1} = f_{2} = f_{3} = f_{4} =$

Article 181 $A_{\omega_{1}, \ldots, \omega_{r}, \omega_{r}, \ldots, \omega_{r}, \omega_{r}, \ldots, \omega_{r}, \omega_{r}, \ldots, \omega_{r}} f_{\omega_{1}, \omega_{1}, \omega_{2}, \omega_{r}, \omega_{r}$

- () f_{ij} , f_{ij} , f

 - 2. $f_{L_{1}} = f_{L_{1}} = f$
- $(-) \quad \mathcal{F}_{\lambda} = (-1)^{\lambda} \mathcal{F}_{\lambda} = (-1)^{\lambda$
- $(\bigvee_{\mathbf{Y}}) \underset{f_{i} \in \mathcal{X}_{i}}{\longrightarrow} (1, x_{i}, L, \frac{f_{i}}{f_{i}}) = (1, x_{i}, L, x_{i}, x_$
 - 1. f_{i_1,i_2,\dots,i_n}
 - 2. $\sum_{X \in \mathcal{X}_{X} \in \mathcal{X}_{X}} \mathcal{I}_{X} = \sum_{X \in \mathcal{X}_{X}} \mathcal{I}_{X} = \sum_{X \in \mathcal{X}_{X}} \sum_{X \in \mathcal{X}_{X}} \mathcal{I}_{X} = \sum_{X \in \mathcal{X}_{X}} \mathcal{I}_{X}$
 - 3. f_{i_1,i_2,\dots,i_n}

- 1. $A_1, \dots, A_k, \dots, A$
- 2. A_{i+1} , f_{i+1} , f_{i+1

and the second s

Article 184 production of the state of the s

and the form of the control of the form of the control of the cont

Article 185 \mathbb{W}

 $f_{i_1,i_2,\dots,i_n}, f_{i_1,i_2,\dots,i_n}, f_{i_1,\dots,i_n}, f_{i_2,\dots,i_n}, f_{i_1,\dots,i_n}, f_{i_2,\dots,i_n}, f_{i_2,\dots,i_$

The second of th

Article 186 L_{1} , L_{2} , L_{3} , L_{4} , L_{5} ,

Chapter 18 Dissolution and Liquidation of the Company

Article 187 $f_{ij} = f_{ij} = f_{ij}$

- $() \qquad /_{\bullet_1} \cdot , \dots \cdot f_{11}, \dots \cdot , \dots ;$
- () por to a contraction of the contraction of the

 $\begin{array}{c} () \quad f_{\omega_{1}} \quad \vdots \quad \vdots \quad \iota_{\omega_{k}} \quad \iota_{\omega_{k}$

Article 188 $f_{\bullet, \bullet}$, f_{\bullet} , $f_{\bullet, \bullet}$, f_{\bullet, \bullet

Logic Andrew JA Company of the second of the

Article 189 f_{A} , f_{A} ,

 $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{5},$

 $f_{A_{1},A_{1},A_{2},A_{3},A_{4},A_{4},A_{5},A$

Article 190 $f_{i,j}$, $f_{i,j}$

At which the form of the same of the same

Article 191 f_{1} f_{2} f_{3} f_{4} f_{3} f_{4} f_{3} f_{4} f_{4}

The control of the co

 $\mathbf{D}_{\mathbf{A}_{i}}(\mathbf{Z}_{i}, \mathbf{z}_{i}, \mathbf{z}_{i}$

Article 192 D₁ $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$

- $(\) \quad \ldots \quad f \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad ;$
- $\binom{1}{V}$, $\frac{ff}{V}$, $\frac{ff}{V}$, $\frac{ff}{V}$, $\frac{f}{V}$, $\frac{f}{V$
- $(\underline{\hspace{0.5cm}})$ \ldots f ∞ ∞ f ∞ f

Article 193 A.f. ω_{ij} $\omega_$

and the second of the second o

All the special accessions a second of the special accession and the second of the sec

 $D_{(-\lambda)}(\mathcal{L}_{\mathcal{M}}) \xrightarrow{} \mathbb{I}_{(\lambda^{\prime} = \lambda_{\lambda^{\prime}})} \mathbb{I}_{(\lambda^{\prime} = \lambda_{\lambda^{\prime}})} \xrightarrow{} \mathbb{I}_{(\lambda^{\prime} = \lambda^{\prime})} \mathbb{I}_{(\lambda^{\prime} = \lambda^{\prime})} \xrightarrow{} \mathbb{I}_{(\lambda^{\prime} = \lambda^{\prime})} \mathbb{I}_{(\lambda^{\prime} = \lambda^{\prime})} \xrightarrow{} \mathbb{I}_{(\lambda^{\prime} = \lambda^{\prime})} \xrightarrow$

Article 194 f_{1} f_{2} f_{3} f_{4} f_{3} f_{4} f_{5} f_{5}

Article 195 A.f. A_{i_1} A_{i_2} A_{i_3} A_{i_4} A_{i_5} A_{i_5}

 L_{1},\ldots,L_{k

Article 196 μ_1 μ_2 μ_3 μ_4 μ_4 μ_5 μ_4 μ_5 μ_5

We have the property of the second of the se

 $f_{(x_1, \dots, x_n)} = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \mathbf{1}_{X^{n-1}$

Article 197 \mathbb{W} $\mathbb{$

Chapter 19 Procedures for Amendment of the Articles of Association

Article 198 A_{1} A_{2} A_{3} A_{4} A_{5} A_{5} A_{5} A_{7} A_{1} A_{2} A_{3} A_{4} A_{5} A_{5}

- () $A_{i_1} A_{i_2} A_{i_3} A_{i_4} A_{i_4} A_{i_5} A$

- () $A_{\cdot_{1}} = A_{\cdot_{1}} = A$

() and a specific constant of the specific constant \mathcal{L}_{X} and \mathcal{L}_{X} and \mathcal{L}_{X} and \mathcal{L}_{X}

Article 201 f_{ij} f_{ij}

Chapter 20 Notices

- ();
- () ...;
- () , f, , , ;
- $(\bigvee_{i_1,\ldots,i_{k+1},\ldots,i_{k$

Article 203

Arti

- - $f_{i_1, i_2, \dots, i_{k+1}, \dots,$

Chapter 22 Supplementary Provisions

Article 206

Artic

Article 207 $A_{X_1, \dots, X_n} f_{A_{1, \dots, X_n}, \dots, A_{n-1, \dots, X_n}} f_$

Article 208 $A_{i_1} = A_{i_2} = A_{i_3} = A_{i_4} = A_$

Article 209 f_{A_1} f_{A_2} f_{A_3} f_{A_4} f_{A_5} $f_$

Article 210 A_{1} A_{2} A_{3} A_{4} A_{5} A_{5}

Article 211 $A_{i_1} = A_{i_2} = A_{i_3} = A_{i_4} = A_$